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Abstract

This work is focussed on modelling mass and charge transfer limitations within an active layer considering uniform
distribution of catalyst phase (classical model) or a more realistic discrete distribution (modi®ed model). A model is
proposed here based on soft-coupled equations describing di�usion, ionic ohmic drop and interfacial charge. It is
applied to the practical case of oxygen reduction or hydrogen oxidation for PEM fuel cells. Simulation shows that
the modi®ed model has to be used for fast kinetics, that is, when the local limitations become predominant. In
contrast, the classical ¯ooded homogeneous model remains suitable when mass and charge transport resistances are
negligible at the particle level.

1. Introduction

Many models have been developed to describe the
working behaviour of PEM fuel cell (PEMFC) active
layers. For PEMFC, three types of model are usually
considered: the homogeneous ¯ooded, the thin ®lm and
agglomerate models [1±3]. These models are used to
simulate the working behaviour of fuel cell electrodes
[4±8]. They also allow estimation of the kinetic param-
eters (exchange current density, Tafel slope) of the
electrochemical reactions occurring in their active layers.
In this latter case, the experimental results obtained with

a rotating disc electrode [9, 10] or a gas di�usion
electrode [11] can be corrected for mass and charge
transport limitations by using classical [9, 10] or
modi®ed [12, 13] models depending on the working
conditions.
The classical models all consider a catalyst phase

evenly distributed and intimately mixed with the elec-
trolyte. As a result the predicted performances of the
fuel cell can only take into account the transport
limitations at the scale of the whole active layer.
Nevertheless, previous studies showed that unexpected
di�usion [14, 16] and ohmic drop [15] e�ects occur at the
particle level so decreasing performances. These latter
e�ects were obtained by considering a more realistic

List of symbols

a interparticle distance (m)
b Tafel slope (V decade)1)
C concentration (mol m)3)
d mean particle diameter (m)
D di�usion coe�cient (m2 s)1)
F faradaic constant (96 500 C mol)1)
i current density (A m)2)
io exchange current density per real catalyst area

(A m)2)
L active layer thickness (m)
n total number of electrons involved in the electro-

chemical reaction
n normal vector
R gas constant (8.31 J K)1 mol)1)
T temperature (K)

U, u dimensionless parameters (±)
V, v dimensionless parameters (±)
z abscissa (m)

Greek symbols
ae transfer coe�cient
e e�ectiveness factor (±)
F potential (V)
c real catalyst area/geometric area ratio (m2 m)2)
g local overpotential (V)
u ¯ux density (mol m)2 s)1)
j ionic conductivity within the L electrolyte phase

(S m)1)
P reduced overpotential (±)
C reduced concentration (±)

Subscript
o index referring to the gas±electrolyte interface
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discrete distribution of catalyst phase as isolated nano-
particles ¯ooded in electrolyte.
The present work is focused on the in¯uence of

the discrete distribution of the catalyst phase on the
electrode performance. The comparison between the
models demonstrates that the classical model dramati-
cally overestimates the kinetic current densities for high
current densities. This unexpected e�ect is then investi-
gated, calculating concentration and overpotential dis-
tributions for a thin active layer without gas pores.
Simulations from a modi®ed model taking into account
the local e�ects are presented for oxygen reduction at
the cathode and hydrogen oxidation at the anode. These
are compared to predictions provided by classical
models and show a deviation from the linear pro®le
concentration and overpotential close to the catalyst
particles. Finally, some dimensionless criteria U, u, V, v,
d/a are proposed to characterize the mass or charge
transfers at the whole active layer and at the particle
level. These allow identi®cation of limiting mechanisms
in the active layer and con®rmation of the appropriate
model to describe its behaviour. Parameters U and u are
similar to modi®ed DamkoÈ hler numbers, they quantify
the in¯uence of di�usion mass transport compared to
kinetics at the level of either the active layer (U) or the
particles (u). Similarly, parameters V and v are recipro-
cals of modi®ed Wagner numbers de®ned as the ratios
of the electrolyte ohmic resistance to the resistance to
charge transfer at the electrode. The dimensionless ratio
d/a highlights the competitive e�ect between neighbour-
ing particles. However, this e�ect is negligible [14±16]
and is not studied here.

2. Active layer modelling

2.1. Description of a nonporous active layer

The active layer of a PEM fuel cell consists of a solid
polymer electrolyte (usually Na®onÒ), PTFE and elect-
rocatalyst nanoparticles, generally platinum deposited
on carbon grain. The gas species, hydrogen at the anode
and oxygen at the cathode, are dissolved at the gas±
electrolyte interface and di�use toward nanoparticles
where they react by anodic oxidation or cathodic
reduction. Di�usion can be described by Fick's law
(Equation 1), conduction by Ohm's law (Equation 2)

u � ÿD grad�C�j j �1�

i � ÿj grad�V �j j �2�

Far from equilibrium, the oxygen reduction mechanism
involves a multistep reaction and is classically described
by the Tafel equation [17]:

ÿi � io exp
ÿ2:3 gc

bc

� �� �
Cred

C0;red
�3a�

For hydrogen oxidation and a for high current density
corresponding to a low coverage rate, the Tafel equation
provides a suitable approximate kinetic model by
neglecting the reverse term:

i � io exp
2:3 ga

ba

� �� �
Cox

C0;ox
�3b�

where bc and ba are the Tafel slopes.
For oxygen reduction on small platinum particles, the

kinetic parameters are well known (Table 1) and
strongly depend on the working temperature of the
electrode which can vary between 298 and 353 K [17].
For hydrogen oxidation, however, the lack of accurate
data prompted consideration of a wide range of values
for the kinetic parameters as shown in Table 2. A Tafel
slope of 0.03±0.04 V decade)1 has been proposed by
Ticianelli et al. [18].
Recast Na®onÒ exhibits a strong dependence of ionic

conductivity on temperature and water content. The
product of di�usion coe�cient, D, and solubility C0 can
vary from 10)9 to 4 ´ 10)9 mol m)1 s)1 for oxygen [17]
and from 10)10 to 10)9 mol m)1 s)1 for hydrogen [18],
when temperature ranges from 298 to 353 K. Moreover,
ionic conductivity falls strongly with decreasing humid-
ity or temperature. In practical conditions, ionic con-
ductivity [19] can vary between 10)1 to 10 S m)1.

2.2. Classical model

The classical ¯ooded homogeneous model [10] is widely
used to describe mass and charge transfer in a nonpor-
ous active layer. It considers that electrolyte and carbon
grains supporting catalyst particles are two intimately
mixed phases (Figure 1). As a consequence, the dis-
solved species (hydrogen or oxygen) simultaneously
di�use and react in the catalyst layer while protons
migrate across the electrolyte (Figure 1). Moreover in
the absence of gas pores, the dissolved species (oxygen
or hydrogen) di�use from the gas-active layer interface
to the active layer-membrane interface while protons

Table 1. Variation ranges for the electrochemical parameters of

oxygen reduction [17]

O2 Exchange

current io
/A m)2

Tafel

slope b

/V decade)1

Total

overpotential go
/V

Low current density 10)6±10)4 0.060±0.070 go < 0.40

High current density 10)3±10)2 0.115±0.125 go > 0.40

Table 2. Variation ranges for the electrochemical parameters of

hydrogen oxidation [18]

Exchange

current io
/A m)2

Tafel slope b

/V decade)1
Total

overpotential go
/V

H2 anode 101±102 0.030±0.120 go < 0.15
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migrate from the membrane±active layer interface to the
active layer±gas interface. So, this model assumes that
di�usion and migration occur in opposite directions
along the z axis while electronic ohmic drop is negligible
compared to ionic drop.
For an isothermal system under steady state condi-

tions, local mass and charge balances lead to the one-
dimensional equations:

D
@2C
@z2
ÿ cLio

nF L
exp

2:3 gj j
b

� �
C
C0

� �
� 0 �4�

j
@2g
@z2
ÿ cLio

L
exp

2:3 gj j
b

� �
C
C0

� �
� 0 �5�

These can be solved numerically in respect of the
following boundary conditions.
(i) At the gas±active layer interface, the concentration

is equal to solubility and the ionic current density is
zero:

z � 0; C � C0; j ~r gj j �~0 �6�

(ii) At the membrane±active layer interface, the total
overpotential is constant and the mass ¯ux density
is zero:

z � L; g � g0; D ~rC �~0 �7�

A dimensionless formulation provides a more suitable
description for studying mass and charge transfer within
the active layer:

@2C
@x2
ÿ U�P�C � 0 �8�

with

U�P� � cLik�P�L
nF DC0

; C � C
C0

@2P
@x2
ÿ V �P�C � 0 �9�

with

V � 2:3 cikL
jb

; P � 2:3 g
b

The classical models highlight two dimensionless pa-
rameters U [15] and V [14] characterizing, respectively,
the mass and charge transfer limitations at the level of
the whole active layer thickness.
Neglecting ohmic drop limitation, the mass balance

(Equation 4) leads to an analytical expression for the
concentration against Z (=z/L). On the other hand, the
charge balance (Equation 5), without di�usion limita-
tion, leads to an equation that can be solved via a
Newton±Raphson method [20]. In the most general case
this method is also required to solve the mass and charge
balance equations (Equations 8 and 9) when considering
di�usion and ohmic drop limitations.

2.3. Modi®ed model

We propose here a modi®ed ¯ooded model for a
nonporous active layer in order to analyse the geometric
e�ect due to the discrete distribution of catalyst. The
main di�erence between the classical and modi®ed
models is that the catalyst particles are distributed
following a hexagonal three-dimensional network
of spherical particles within the electrolyte [11, 15]
(Figure 2).
Using this distribution for every particle line, six

symmetry planes can be considered around every
particle and its neighbours. In such conditions, the
hexagonal symmetry can be approximated by a cylin-
drical symmetry and the equations have to be rewritten
in cylindrical coordinates (Figure 3). Simulations were
performed by using the ®nite element method (commer-
cial software Flux-ExpertÒ) with axisymmetric equa-
tions and a two dimensional grid. This approach using
the ®nite element method allows, not only to take into
account the mass and charge transport at the particle

Fig. 1. Classical homogeneous ¯ooded model for an active layer

without gas pores.

Fig. 2. Modi®ed model considering the discrete distribution of catalyst

phase as nanoparticles.

Fig. 3. Hexagonal 3D network of spherical particles. Modi®ed model.
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level, but also the competition e�ect between neigh-
bouring particle, as suggested by Stonehart [21].
In the most general case, both di�usion and ionic

ohmic drop in the electrolyte are considered and act in
opposite direction for a nonporous active layer with an
electrochemical Tafel law at the electrolyte±particle
interface (Figure 3). This case is described by the soft
coupled equations (Equations 10, 11 and 12) leading to
a system of partial derivate equations to be solved with
the same boundary conditions as for the classical model:

r � �DrC� � 0 �10�

r � �jrg� � 0 �11�

i � io exp
2:3 g

b

� �
C
C0

� �
�12�

If di�usion is the rate determining step relative to ohmic
drop, the potential remains fairly constant anywhere
within the electrolyte and thus the Tafel equation can be

reduced to a single order kinetic law. Thus, the
numerical formulation will be described using Equations
10 and 12: Fick's law and a single order kinetic equation
with soft coupling at the particle interface [16]. It is
completed by the boundary conditions: a Dirichlet
condition at the gas-electrolyte interface (C = C0) and
homogeneous Neuman condition at the membrane±
active layer interface (u = 0).
If di�usion is negligible relative to ohmic drop, the

concentration remains fairly constant. The numerical
formulation then consists of writing the soft-coupled
Ohm and Tafel equations (Equations 11 and 12) to
describe charge transfer at the electrolyte±particle inter-
face [15]. These equations have to be solved in the
respect of the following boundary conditions: a Dirich-
let condition at the membrane±active layer interface
(g = g0) and a homogeneous Neuman condition
(i = 0).
Considering both di�usion and ionic ohmic drop

limitation, the numerical formulation then consists of
writing the soft-coupled di�usion, Ohm and Tafel laws
(Equations 10, 11 and 12) to describe the charge transfer
at the electrolyte±particle interface. These equations can
be directly solved by the software Flux±ExpertÒ through
an iterative algorithm using the classical ®nite element
method (see appendix).

2.4. Dimensionless formulation

In this case, the dimensional analysis highlights three
extra parameters in addition to the dimensionless
parameters de®ned for the classical model: the param-
eters u [14, 16], v [15] related to the transfer at the

catalyst particle (Table 3) and the dimensionless geo-
metrical ratio d/a [14±16]. As a result, the dimensionless
expression for the e�ectiveness factor e is a function of
only ®ve independent parameters.
The e�ectiveness factor characterises the electrocata-

lyst utilization and is de®ned as the ratio of the
experimental electrode current density to the kinetic
electrode current density (without limitations due to
ohmic drop and di�usion) [22]:

Thus, the experimental current density referred to the
geometrical area can be written as

iexp � c e ik �14�

Under kinetic control, di�usion and ohmic drop resis-
tances are negligible compared to charge transfer resis-
tance (U � 1, V � 1) and the catalyst utilization rate e
remains close to unity. In contrast, for fast electrochem-
ical reactions, mass and charge transport resistances are
no longer negligible in the whole active layer level
(U � 1, V � 1) and then the catalyst utilization rate
decreases strongly. Moreover, at the particle level, mass
and charge transport limitations become predominant
when the dimensionless parameters u and v tend to
unity. Then transport resistances cannot be neglected at
the particle level and consequently the classical models
are no longer suitable for describing the working
behaviour of the active layer. Such conditions require
use of the modi®ed models [12, 13]. On the other hand,
the classical model is appropriate when local parameters
u and v are considerably less than unity.
Hence the dimensionless parameters de®ned for this

study are useful for identifying the limiting steps. As a
simpli®ed rule, transport limitations are no longer
negligible compared to kinetics when the dimensionless
parameters are close to unity or greater.

3. Results and comments

Di�usion limitations are classically considered at the
level of the whole active layer in gas di�usion electrodes

Table 3. Dimensionless parameters of mass and charge transfer

resistances

Mass transfer

resistance

Charge transfer

resistance

Referred to the active layer

level (µ cL) U � cikL
nF DC0

�13� V � cikL
jb

�14�

Referred to the particle

level (µ d/2) u � ik�d=2�
nF DC0

�15� v � ik�d=2�
jb

�16�

e � experimental current density

kinetic current density (without mass and ohmic drop limitations)
�13�
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[10]. Nevertheless, ionic ohmic drops are not always
insigni®cant compared to di�usion depending on over-
potential, temperature, humidity and on the nature of
the ionomer. Moreover, di�usion and migration e�ects
at the particle level [15, 16] are not negligible relative to
limitation at the whole active layer level. Therefore, it is
important ®rst to compare the polarization curves
predicted by the classical models and the modi®ed one.
This study is performed here for a realistic weakly
porous active layer (L = 10 lm and c = 32 cm2 cm)2)
by using the kinetic parameters for cathodic oxygen
reduction and anodic hydrogen oxidation at the cathode
presented respectively in Tables 1 and 2. Thus, the
comparison of concentration and potential distributions
predicted by both models, in the case of a very thin
active layer without gas pores (L = 1 lm, d = 10 nm,
a = 100 nm), gives unexpected results due to the
contribution of the discrete distribution of the catalyst
phase. This e�ect may be explain in term of mass
transport and ohmic resistance at the particle level.
Unfortunately, for a large active layer (L� a), it is
impossible to present the concentration and potential
pro®les. Thus, a thinner active layer (active layer
thickness about 1 lm particle diameter about 10 nm
and interparticle distance about 0.1 lm) is used, which
allows the concentration and potential pro®les close to
the catalyst particles to be calculated.

3.1. Cathodic oxygen reduction: case of slow kinetics

Figure 4 shows the polarisation curves obtained with
the classical and modi®ed ¯ooded homogeneous models.
When considering both di�usion and ohmic drop
limitations, the predicted current densities are un-
changed for potentials ranging from 300 to 700 mV.
The discrete distribution of the catalyst phase seems to
induce no e�ect for oxygen reduction.

If using a thinner active layer (Figure 5), the concen-
tration steadily declines from the gas±electrolyte inter-
face to the electrolyte±membrane interface while the
potential is quite constant. This later expected result
corresponds to dimensionless parameters V and v always
smaller than unity due to slow kinetics and high ionic
conductivity. Moreover, the dimensionless parameter u
remains smaller than 1 and the concentration pro®les
maintain a quasi-linear shape. Consequently, ohmic
drop resistance remains negligible and di�usion in the
active layer is weakly modi®ed by the discrete distribu-
tion of catalyst phase as isolated nanoparticles.
For oxygen reduction which is characterised by slow

kinetics, parameters u and v referred to the di�usion and
ionic ohmic drop at the particle level are always smaller
than unity. As a result, the modi®ed model predicts
almost the same concentration pro®les as the classical
model (Figure 6) and, consequently, the expected real
kinetic current density (or catalyst utilization rate) are
identical (Figure 4) [14, 16]. Here a discrete distribution
is of no interest in describing the catalyst phase because
it does not improve the knowledge of the oxygen
concentration and potential pro®les. In such conditions,
the classical model is suitable for prediction of the
working behaviour of the cathode.
For a very thin active layer thickness, ohmic drop is

negligible (V, v� 1). The concentration distribution
predicted in the general case (Figure 5(a)) is weakly
modi®ed and is similar to those predicted when consid-
ering only di�usion (Figure 6(a)). However, for a larger
and more realistic active layer, the predicted current
densities are greater when considering only di�usion
rather than both di�usion and ohmic drop limitation
(Figure 4). In this case, the dimensionless parameter V
increases while v remains constant and smaller than
unity. Consequently, the ionic ohmic drop limitation
can no longer be neglected over the whole active layer

Fig. 4. Polarization curves for cathodic oxygen reduction predicted by the classical and modi®ed models for a realistic active layer (L = 10)5 m,

c = 31.2 m2 m)2, DC0 = 10)9 mol m)1 s)1, j = 0.1 S m). Classical model without ohmic drop limitation for low current densities

(io = 1 ´ 10)6 A m)2, b = 0.060 V decade)1): (...+...) and for high current densities (io = 1.4 ´ 10)2 A m)2, b = 0.12 V decade)1):

(±± + ±±). Classical model with di�usion and ohmic drop, for low current densities: (...s...) and for high current densities (±± s ±±). Modi®ed

model with di�usion and ohmic drop, for low current densities: (...w...) and for high current densities (±± w ±±).
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compared to di�usion for a large active layer as
classically considered.

3.2. Anodic hydrogen oxidation: case of fast kinetics

For hydrogen oxidation, the classical model overesti-
mates the current density in comparison to that pre-
dicted from the modi®ed model (Figure 7). The results
are signi®cantly di�erent and can be easily understood
by studying the concentration and potential curves
distribution within a thin active layer (Figure 8).
For hydrogen oxidation (Figure 8), the modi®ed

model also predicts a quasi-linear distribution for
concentration over the whole active layer (Figure 8(a)).
However, a deviation from the linear concentration
pro®le can be observed close to the catalyst particles for
fast kinetics. The concentration pro®le shows a planar
¯ux density toward the electrolyte layer and a spherical
¯ux density at the particle level with a strong local
concentration gradient for catalyst particles located
close to the gas±electrolyte interface. Figure 8(b) shows
the potential distribution within the active layer pre-
dicted by the modi®ed model. As previously, the

equipotential curves have a quasi-linear shape with a
slight curvature close to the catalyst particles. As a
conclusion, the discrete distribution of catalyst phase
does not provides any signi®cant modi®cation in pre-
dicting the potential pro®les for hydrogen oxidation
(v < 1). In contrast it strongly acts on concentration
pro®les (uP1).
In such a case, di�usion and ohmic drop limitations

are no longer negligible at the particle level and the
dimensionless parameter u becomes greater than unity
while v is close to 1. Indeed the resulting current density,
concentration and overpotential pro®les for hydrogen
oxidation predicted by the modi®ed and classical models
are signi®cantly di�erent (Figure 9). Comparison be-
tween the two models clearly shows that the hypothesis
of uniform distribution of catalyst phase leads to an
overestimated concentration gradient close to the gas±
electrolyte interface and an optimistic catalyst utilisation
rate [14, 16] (Figure 9).
Moreover, the concentration pro®les are also very

di�erent according to whether ohmic drop (Figures 8(a)
and 9(a)) is taken into account or not (Figures 10(a)

Fig. 6. Predicted contour plots for concentration in the active layer

calculated from the modi®ed (a) and classical (b) models for oxygen

reduction at cathode neglecting ohmic drop limitation (U=1.4 ±

u = 1.8 ´ 10)2). (io = 1.4 ´ 10)2 A m)2, b = 0.12 V decade)1,

jg0j = 0.60 V and DC0 = 10)9 mol m)1 s)1 and j = 1 S m)1 at 353).

Fig. 7. Polarization curves for hydrogen oxidation (io = 102 A m)2, b = 0.030 V decade)1) predicted by the classical model without ohmic drop

(±± + ±±); the classical model with di�usion and ohmic drop (±± s ±±) and the modi®ed model with di�usion and ohmic drop (±± w ±±); for an

active layer (L = 10)5 m, c = 31.2 m2 m)2, DC0 = 10)9 mol m)1 s)1, j = 1 S m)1).

Fig. 5. Contour plots for concentration (a) and potential (b) in a thin

active layer (L = 10)6 m, c = 0.4 m)2 m)2) from the modi®ed model

for oxygen reduction at cathode (U = 1.42 ± u = 1.8 ´ 10)2; V =

4.6 ´ 10)3 ± 5.8 ´ 10)5).
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and (b)). In fact, ohmic drop resistances over the whole
active layer, which are no longer negligible (V � 1),
decrease the kinetic rate close to the gas±active layer
interface. As a result, hydrogen is steadily consumed and
concentration gradients are smaller than those predicted
when only considering mass transfer limitations
(Figure 9(a)). In such conditions, catalyst particles act
in a more uniform way. Furthermore for a thicker active

layer, ohmic drop induces a strong limitation at the level
of the whole active layer thickness.
As a rule, the classical model is quite suitable in

describing the working behaviour of the active layer for
slow kinetics [11] when parameters u and v remain small
compared to one. In contrast, the concentration and
potential pro®les are very di�erent for fast kinetics
(u and v > 1), depending on whether the discrete
character of the catalyst phase distribution is taken into
account. The classical model, which is generally used to
describe the active layer working behaviour, is then not
able to describe the actual electrode working and
overestimates the performance of the PEMFC.

4. Conclusion

This work con®rms that the discrete distribution of
catalyst phase as isolated nanoparticles can play an
important role on mass and charge transport in the
active layers of a PEMFC. This in¯uence results from
spherical di�usion and ohmic drop close to the catalyst
particles, which are able to strongly modify both the
concentration and potential distributions and thus the
predicted current densities. Moreover, this study dem-
onstrates that the ohmic drop limitation cannot be
neglected as classically assumed, at the level of the whole
active layer thickness for high current densities, large
active layer thickness or low ionic conductivity.
These limitations at the particle level appear to be

insigni®cant in the case of oxygen reduction. In such
conditions, the classical model remains suitable for
describing the working behaviour of the cathode. In
contrast, di�usion resistance at the particle level be-
comes predominant for hydrogen oxidation requiring
the use of the modi®ed model which is presented here.
Four dimensionless parameters are proposed to de-

termine the limiting phenomenon within the active layer.
These criteria allow selection of the more suitable model
to describe both mass and charge transfer in the active
layer: parameters U and V estimate the in¯uence of
transport resistance at the whole active layer level, while
u and v are related to the transport resistances at the
particle level. When parameters u and v tend to unity,
the classical model is not able to describe the working
behaviour of the active layer and the modi®ed model
must be used.
The present approach is not limited to fuel cell

electrodes but may also be used with advantage to any
anodic or cathodic reaction occurring in the active layer
of porous electrodes using catalyst particles ¯ooded with
electrolyte.
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Appendix

In this Appendix, the process leading to the speci®c the
®nite element equation is presented in order to numer-
ically solved the physical problem. Equations 10 and 11
are solved in a domain (W) with the boundary conditions
(6, 7 and 12) imposed at the interface (@W).
Using a projective function a, Laplace equations (10

and 11) can be transformed to the integral equation:ZZ
X

ar � �ÿrrU�dS � 0 �A1�

Since for any scalar p and vector A:

r�pA� � prA� Arp �A2�

Equation 1 may be written asZZ
X

ar � �ÿrrU�dS �
ZZ

X

r � �ÿarrU�dS

�
ZZ

X

r�rUra�dS �A3�

The Green±Ostogradski theorem leads to
RR

Xr�A�dS �R
@X�A�n dl. Then,ZZ

X

r � �ÿarrU�dS �
Z
@X

�ÿarrU�n dl �A4�

where n is the normal vector.
The boundary condition can thus be introduced by

replacing the divergence term (Equation 4) by the
charge transfer kinetic term (Equation 12) at the elec-
trolyte±nanoparticle interface (nonhomogeneous Neu-
mann condition):Z

@X

�ÿaDrC�n dl �
Z
@X

a
io
nF

exp
2:3 g

b

� �
C
C0

dl �A5�

Z
@X

�ÿajrg�n dl �
Z
@X

aio exp
2:3 g

b

� �
C
C0

dl �A6�

Taking into account the boundary conditions, the ®nal
soft coupled equations between the concentration and
the overpotential are expressed asZZ

X

DrarC dS �
Z
@X

a
io
nF

exp
2:3 g

b

� �
C
C0

dl �A7�

ZZ
X

jrarg dS �
Z
@X

aio exp
2:3 g

b

� �
C
C0

dl �A8�

In the Galerkin formulation, C and g are approximated
in each ®nite element using the Lagrange polynomial
function aj and the values of the unknowns Cj and gj at
each node j. Using this approximation, Equations 7 and
8 are transformed into matrix systems which are solved.
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